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Analytical expressions for the coupling impedance of a long narrow slot in a coaxial beam pipe
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The longitudinal impedance and loss factor for a long narrow slot in a coaxial pipe are calculated by means
of the modified Bethe's diffraction theory. The effects of the interference between the fields scattered by
dipoles along the slot are taken into account, obtaining a final expression valid even for slots longer than the
wavelength[S1063-651X%98)14909-1

PACS numbes): 41.75-i, 41.20—q, 29.27-a

[. INTRODUCTION principle, the slot can be thought of as composed of an infi-
njte number of infinitesimal slices of lengttz and widthW

.

Several recent papers have been devoted to the study
::r:)ielfifr?Ct'Ehoen\}ggu%en?rgh?nqgglicsnye(l)r]: %?(T;ﬂ:;? gr?:ﬁzsh:?ndbzlro According to the modified Bethe’s diffraction theory, we
piing . “may write the differential equivalent dipole moments for

At low frequency, when the wavelength is larger than the

aperture size, the problem is treated in terms of the statlgaCh slice as

polarizabilities of the apertures and the typical quantities of dM,(2)=[Ho(2)— Heo(2)Jdey, (18
interest, such as loss factor and coupling impedance, can be ¢ ¢
calculated by different methodg,2]. dP,(2)=¢&[Eq(2) — Ee(2)]d e, (1b)

At higher frequency, these procedures can be no longer
followed. Recently frequency dependant polarizabilities havavhereH,,,(z) andEy,(z) are the primary fields generated by
been introduced as presented &j. a point chargey, traveling with velocityc along the axis of a

In this paper we analyze the case of a long slot in a coperfecting conducting pipe, whilds,(z) andEg(z) are the
axial vacuum chamber using a different method, where théields scattered by the slot. The coefficients of the scattered
slot is subdivided in infinitesimal slicefst] for which the  fields modal expansion are determined through the Lorentz
static approximation is still valid. The problem is solved self- reciprocity principle and they depend on the field sources,
consistently in the framework of the modified Bethe’s dif- that is the dipole moments on each slice. The differential
fraction theory[5], which has been successfully applied to polarizabilitiesde,,, and da, are determined by averaging

other case$2,6,7]. the static polarizabilities along the slot lend#i. Thus

In Sec. Il we expose the basis of the theory leading to a
set of integral equation. In Sec. lll we find an approximate dz

. ) . . i dan=am, —, (2a

solution, and derive the analytical expressions for coupling m— “m |
impedance and loss factor. In Sec. IV we discuss the
asymptotic behavior of the solution and in Sec. V the results dz
are compared to numerical codes. dae=ae 1~ (2b)

For the sake of simplicity, we limit our analysis to fre-
quencies below the cutoff of the TEmode in the inner and

We consider a long and narrow slot on the inner tube of auter pipe. In this case Eqgél), as shown in the Appendix,
coaxial beam pipéFig. 1). By applying the superposition become

Il. GENERAL THEORY

d dM

[Hw(z) i > phj jlot dg‘p emjl sgné— N df}, (3a)
dP, . dpP, dm,
5 (z)—‘gf Eor(2) - JZeOrf T eOrfI sg§—2) —gz- e 1o f'dg} (30)
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Equationg3) constitute a system of integral equations for
dM,/dz anddP,/dz. From a physical point of view, we
may see that the scattered fields depend on the electric and
magnetic dipoles all over the aperture, since each infinitesi-
mal slice radiates a forward and a backward wave in the
coaxial region. While the waves produced by the electric and
magnetic dipoles of each single element are in phase along

the beam direction, they are in phase opposition along the FIG. 1. Relevant geometry.
other.
Once systenf3) has been solved, it is straightforward to  Ill. ANALYTICAL EXPRESSIONS FOR IMPEDANCE
derive the longitudinal coupling impedange)] AND LOSS FACTOR
1 [+ . Integral equation$3) could be dealt with by means of the
Z(w)=—— f E,(r=0)elo%dz, 4) standard analytical or numerical techniques. However, since
- the energy radiated trough the hole is only a minor fraction

since the longitudinal electric field on the beam pipe axis |sof the total incident energy and the scattered field can be

. : . considered as a small perturbation with respect to the pri-
?r']\éetggll itrzzgdl\g’;]ncg?/?i?ﬁ oniy1]. Each slice contributes to mary field, system(3) can be treated with perturbative pro-

cedures. The simplest approach is the iterative solution

wZ, stopped at first order. In other words, we assume that in the
dZ(w)=] 27qb ( dM,+dP, |elko?. (50  integral expression of the right-hand side of E@®.
. e I dM,\ %" &
Summing up all the infinitesimal contributions we get ( dz(P) :Tm Ho,(2), (78
Z(w)=f 47| wZy (L2 (1 dM¢+ﬂ)ejkozdz_ 4p.| 0
slot 27TQb —Lp\c dz dz (6) ( dzr) Sil'e EOr(Z) (7b)

The above expression can be seen as a generalization $fibstituting Eqs(7) in Egs.(3), we get the first order solu-
the N holes interference problem in a coaxial beam gipe  tion

dM, ®m Lo ay .
—¢) = i jkolz—¢] —7)e ikolz=¢l
( dz ) L HO(p(Z)< 1 J 2 L MhO‘PJ'SIOte 0 d§+J 2 L hO(peOr ,Llot Sgr’(é‘: Z)e 0 dzg ’ (8&)

dP\ 1 ea, weag , A e :
=__¢ i —__*€ —jkolz—¢l i —_m — 7)ea~ikolz— ¢l
(dz> T Eo@|1-1 5 eOrLlote OFEdEF] 5 o ho¢e0rjslotsgr(§ z)e” Moz Eld¢ (8b)

from which we derive the first order approximation for the longitudinal impedance

Zok3 1—cog2koL)
O— 2 _ 2 = YURRenho=/
2(@)= 323 n(dlb) | (@mT @) T (am = ae)” i }
oko (am— ap)? sin(2koL)
T gz | (amt @)~ g |1 2kl || ©
|
Figures 2 and 3 show the frequency behavior of the realve obtain
and imaginary parts of the impedance for a long slot. It can
be observed that the resonance effect, due to the slot length, Zoc\/;
is predominant in the real impedance, whereas it is negligible k(o) = ]
in the imaginary impedance. Similar behaviors were recently 12870 In(d/b) o,
obtained by Fedotov and Gluckstern using a different (amt ae)?  (am—ae)?
method[9]. - S [1_e7(|-/0'z)2] _
For a Gaussian bunch of lengthy, applying the standard 0z L
definition of loss factor (12)
k(o,)=— f Re[Z(w)e“"z"i’czdw] (10) In Fig. 4 we show the ty_plcal behavior of t_he loss factor
T Jo for a rectangular slotsolid line) and compare it to the low
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FIG. 2. Imaginary impedance of a rectangular slot.

frequency expressiofEqg. (13), dashed ling One can see
that the curves are almost identical 1ot o,/2.

IV. ASYMPTOTIC BEHAVIOR
A. Limit for small apertures

In the limit of small apertureskgL<1) Eq.(9) yields the

well known expressions for the imaginary and real parts of

the impedance

ZOkO
Z|m(w)=m (amt ae), (129
Zed w)= 2o (a2+ad), (12D
RE&®) = 16m30%n(d/b) o™ e

which can be obtained independently by the modified Beth
theory[2] or by a field matching methol®]. Moreover, the
loss factor for a small hole,

Zoc\/;

64m*b*In(d/b) o

k(o) = 5 (a2 +ad), (13

can be easily obtained from E¢L1) if the conditionL/o,
<1 is satisfied.

10 ——r—rTr T 7
g L b=20 mm B
L d=24 mm
3 w=8 mm
_ 6 L L=100 mm
g L
E I
o4
2 -
O L 1 1 1
0 0.5 1 1.5 2 2.5
f [GHz]

FIG. 3. Real impedance of a rectangular slot.
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FIG. 4. Loss factor vs length for a rectangular glsolid line).

The dashed line is the low frequency approximation.

B. Limit for long slots

When the wavelength is much shorter than the slot length,

from Eq.(9) we see that, consideridglL > 1, the impedance

is given by
Zui( )~ ZOkO ( n ) (am_ae)2
M) g 2p? | T e T g b PIn(d/b)L |’
(143
Zok3 ,
Zee( @)= — e (@ + @) 14D
Re(®) = o (i) (T 4 (140

For very long slots we may use in Eq44) the following
relations[10]

(15

= —ae=axl,

gvhich show that, in this case, both real and imaginary parts

of the impedance have their limit equal to zero. It must be
stressed that this result is not applicable to the low frequency
impedance since it does not fulfill the conditigl > 1.

The loss factor can be obtained directly from Etfl) and
it saturates fot.>20,. This effect is in agreement witla].
In order to get the saturation value, we may use E#S)
getting

k(o) = (16)

Zoc\m (

2a)\ 2
1287*b%In(d/b)o, \ L |

L

It is worth noting that Eq(16) is independent from the
shape of the slot ends since the limit valuecois the same
(mW2L/16).

V. COMPARISONS WITH NUMERICAL RESULTS

We have performed simulations with the numerical code
MAFIA [11] in the case of both rectangular and rounded end
slots of different length_, width W, and for a beam pipe
thickness in the rang&é=1-8 mm(see Figs. 5-)7 To this
end, it has been necessary to slightly modify the equations to
account for the wall thickness that changes the problem ge-
ometry and introduces attenuation for the field in the slot.
Callingb, andb,, respectively the inner and the outer radius
of the beam pipe, one can see that the fabtbin the de-
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FIG. 5. Loss factor of a rectangular slot 8 mm wide. Black  FIG. 6. Loss factor of a rectangular slot 10 mm wide. Black
diamonds areqAFIA points. diamonds areAFIA points.

nominator of Eqs(9) and (11) has to be replaced by the numerically in the saturation region versus the wall thick-
productb?b2. Furthermore the polarizabilities must be cor- Ness. Comparison with expressi¢h6) corrected by Egs.

rected; in a thin wall their expressions 4] (19 gives as best fiCe=Cy=0.615(See Fig. 7.
It should be pointed out that the theory adopted to account

T 5 for the slot thickness is, strictly speaking, valid only in the
ae=— 75 WL(1-0.566%+0.139&), (178  static approximation. In our case, the primary fielg, field
does not couple to the T modes of the rectangular slot,
while the first coupling mode is the T having its cutoff
W2L(1+0.357%—0.0356¢%) (1709  frequency aff;q ;= c/2W. Thus the static approximation for
the attenuation is still valid in the frequency range of our
interest, namelya>W.

an
amzl—B

for rectangular slots, while for rounded end they become

VI. CONCLUSIONS

a
=— — W?L(1—0.765(x+0.18947), 18
e 16 ( ) (183 In this paper we have obtained an approximated analytical

expression for the coupling impedance and loss factor of a

long slot in a coaxial pipe. When the slot is longer than the

wavelength, the real part of the impedance presents a typical

resonant behavior related to the slot length. Our results are in

wherex=W/L. good agreement with those obtained in literature with differ-
In general, the effect of the pipe thickness can be consident methods and witlAFIA simulations.

ered, using the approximation developed by McDoral],

as a function of the corresponding “zero-thickness” polariz- APPENDIX

T
ap=1g WL(1-0.085%—0.0654%), (18D

abilities as From Egs.(1) and(2)
ae=Craee ?T with y=mJ1ILZ+1W? (199 an
- dM(p(Z):T[HO‘p(Z)_HS(p(Z)]dzi (Al)
am=Cname "W, (19b)
10 ¢ 3
whereT is the wall thickness an@g andC,, are constants to I [ I 3
be determined. C b =20 mm ]
This approach has been successfully applied for a circular 1E we B 3
hole where the value of the constants’ analogtoandCy, E _ 1
are numerically calculated ifiL2] and found to be approxi- o1 L

mately equal to 0.83. In our case, it is questionable whether
this approach may be applicable to the cas&/aF ratios as .
small as 0.1. If12] it is suggested that Eq$19) are very 001 L Cg=Cpn=0.615
accurate, in the case of circular holes, when the thickness- E

diameter ratioT/D>0.25, though numerical results in that X ]
paper show that, foff/D~0.1, the error in the thick-wall 0001 Lot Lo b b Lo
polarizability determination is around 10%. A comparison of 0 02 04 (T)/-g 0.8 1 1.2

the analytical(dashed lines in Figs. 5 and &nd numerical

results obtained witivaria (black diamondg suggests the FIG. 7. Loss factor of a rectangular slot 8 mm wide in the
following values:Cg=C,,=0.63 for T/W=0.1 and 0.2. In  saturation regionl(=160 mm) vsT/W ratio. Black diamonds are
order to check this result, the loss factor has been computeehria points.

k [MV/C]
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s whereh,, andey, are the TEM modal function.
dP;(2)= -~ [Ea(2) ~Es(2)]dz, (A2) The total scattered field is the integral along the slot of all
these waves. We may write

where the primary incident field is given by

z
q . H Z :f h efjko(sz)da
Eo(2)=ZoHo (=20 5 € e (A3) el D7 |0 ©
L2
Each infinitesimal element of the slot at positignis the _f hO(Peiko(Z*@d b(¢), (AB)
source of a forward and a backward TEM wave with ampli- z
tude[5]

. z . L/2 .
da()="5 [uNo,AM(£) +eqdP ()],  (a4)  Es(D= [ oo o dater [ ekt

(A7)
db 1 ho,dM dP A5
=—— —e , . . .
(&) 7 L1hodM(&) —eordPr ()] (A5) from which Eqgs.(3) are easily derived.
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