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Analytical expressions for the coupling impedance of a long narrow slot in a coaxial beam pipe
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The longitudinal impedance and loss factor for a long narrow slot in a coaxial pipe are calculated by means
of the modified Bethe’s diffraction theory. The effects of the interference between the fields scattered by
dipoles along the slot are taken into account, obtaining a final expression valid even for slots longer than the
wavelength.@S1063-651X~98!14909-7#

PACS number~s!: 41.75.2i, 41.20.2q, 29.27.2a
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I. INTRODUCTION

Several recent papers have been devoted to the stud
the effect, on the beam dynamics, of pumping holes and s
coupling the vacuum chamber to an external antichambe

At low frequency, when the wavelength is larger than t
aperture size, the problem is treated in terms of the st
polarizabilities of the apertures and the typical quantities
interest, such as loss factor and coupling impedance, ca
calculated by different methods@1,2#.

At higher frequency, these procedures can be no lon
followed. Recently frequency dependant polarizabilities ha
been introduced as presented in@3#.

In this paper we analyze the case of a long slot in a
axial vacuum chamber using a different method, where
slot is subdivided in infinitesimal slices@4# for which the
static approximation is still valid. The problem is solved se
consistently in the framework of the modified Bethe’s d
fraction theory@5#, which has been successfully applied
other cases@2,6,7#.

In Sec. II we expose the basis of the theory leading t
set of integral equation. In Sec. III we find an approxima
solution, and derive the analytical expressions for coupl
impedance and loss factor. In Sec. IV we discuss
asymptotic behavior of the solution and in Sec. V the res
are compared to numerical codes.

II. GENERAL THEORY

We consider a long and narrow slot on the inner tube o
coaxial beam pipe~Fig. 1!. By applying the superposition
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principle, the slot can be thought of as composed of an i
nite number of infinitesimal slices of lengthdz and widthW
@4#.

According to the modified Bethe’s diffraction theory, w
may write the differential equivalent dipole moments f
each slice as

dMw~z!5@H0w~z!2Hsw~z!#dam , ~1a!

dPr~z!5«@E0r~z!2Esr~z!#dae , ~1b!

whereH0w(z) andE0r(z) are the primary fields generated b
a point chargeq, traveling with velocityc along the axis of a
perfecting conducting pipe, whileHsw(z) andEsr(z) are the
fields scattered by the slot. The coefficients of the scatte
fields modal expansion are determined through the Lore
reciprocity principle and they depend on the field sourc
that is the dipole moments on each slice. The differen
polarizabilitiesdam and dae are determined by averagin
the static polarizabilities along the slot length@4#. Thus

dam5am

dz

L
, ~2a!

dae5ae

dz

L
. ~2b!

For the sake of simplicity, we limit our analysis to fre
quencies below the cutoff of the TE11 mode in the inner and
outer pipe. In this case Eqs.~1!, as shown in the Appendix
become
dMw

dz
~z!5

am

L FH0w~z!2 j
v

2
mh0w

2 E
slot

dMw

dj
e2 jk0uz2judj1 j

v

2
h0we0rE

slot
sgn~j2z!

dPr

dj
e2 jk0uz2judjG , ~3a!

dPr

dz
~z!5

«ae

L FE0r~z!2 j
v

2
e0r

2 E
slot

dPr

dj
e2 jk0uz2judj1 j

v

2
mh0we0rE

slot
sgn~j2z!

dMw

dj
e2 jk0uz2judjG . ~3b!
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Equations~3! constitute a system of integral equations f
dMw /dz and dPr /dz. From a physical point of view, we
may see that the scattered fields depend on the electric
magnetic dipoles all over the aperture, since each infinit
mal slice radiates a forward and a backward wave in
coaxial region. While the waves produced by the electric a
magnetic dipoles of each single element are in phase a
the beam direction, they are in phase opposition along
other.

Once system~3! has been solved, it is straightforward
derive the longitudinal coupling impedance@8#

Z~v!52
1

q E
2`

1`

Ez~r 50!ejk0zdz, ~4!

since the longitudinal electric field on the beam pipe axis
given by the TM0,m modes only@1#. Each slice contributes to
the total impedance with

dZ~v!5 j
vZ0

2pqb S 1

c
dMw1dPr Dejk0z. ~5!

Summing up all the infinitesimal contributions we get

Z~v!5E
slot

dZ5 j
vZ0

2pqb E
2L/2

L/2 S 1

c

dMw

dz
1

dPr

dz Dejk0zdz.

~6!

The above expression can be seen as a generalizatio
the N holes interference problem in a coaxial beam pipe@7#.
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III. ANALYTICAL EXPRESSIONS FOR IMPEDANCE
AND LOSS FACTOR

Integral equations~3! could be dealt with by means of th
standard analytical or numerical techniques. However, si
the energy radiated trough the hole is only a minor fract
of the total incident energy and the scattered field can
considered as a small perturbation with respect to the
mary field, system~3! can be treated with perturbative pro
cedures. The simplest approach is the iterative solu
stopped at first order. In other words, we assume that in
integral expression of the right-hand side of Eqs.~3!

S dMw

dz D 0th

5
am

L
H0w~z!, ~7a!

S dPr

dz D 0th

5
«ae

L
E0r~z!. ~7b!

Substituting Eqs.~7! in Eqs.~3!, we get the first order solu
tion

FIG. 1. Relevant geometry.
S dMw

dz D 1st

5
am

L
H0w~z!S 12 j

v

2

am

L
mh0w

2 E
slot

e2 jk0uz2judj1 j
v

2

ae

cL
h0we0rE

slot
sgn~j2z!e2 jk0uz2judzj D , ~8a!

S dPr

dz D 1st

5
«ae

L
E0r~z!S 12 j

v

2

«ae

L
e0r

2 E
slot

e2 jk0uz2judj1 j
v

2

am

cL
h0we0rE

slot
sgn~j2z!e2 jk0uz2judj D ~8b!

from which we derive the first order approximation for the longitudinal impedance

Z~v!5
Z0k0

2

32p3b4ln~d/b! F ~am1ae!
21~am2ae!

2
12cos~2k0L !

2k0
2L2 G

1 j
Z0k0

4p2b2 H ~am1ae!2
~am2ae!

2

8pb2ln~d/b!L F12
sin~2k0L !

2k0L G J . ~9!
or
Figures 2 and 3 show the frequency behavior of the r
and imaginary parts of the impedance for a long slot. It c
be observed that the resonance effect, due to the slot len
is predominant in the real impedance, whereas it is neglig
in the imaginary impedance. Similar behaviors were rece
obtained by Fedotov and Gluckstern using a differ
method@9#.

For a Gaussian bunch of lengthsz applying the standard
definition of loss factor

k~sz!5
1

p E
0

`

Re@Z~v!e2v2sz
2/c2

dv# ~10!
al
n
th,
le
ly
t

we obtain

kl~sz!5
Z0cAp

128p4b4ln~d/b!sz

3H ~am1ae!
2

sz
2 1

~am2ae!
2

L2 @12e2~L/sz!2
#J .

~11!

In Fig. 4 we show the typical behavior of the loss fact
for a rectangular slot~solid line! and compare it to the low
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frequency expression@Eq. ~13!, dashed line#. One can see
that the curves are almost identical forL,sz/2.

IV. ASYMPTOTIC BEHAVIOR

A. Limit for small apertures

In the limit of small apertures (k0L!1) Eq.~9! yields the
well known expressions for the imaginary and real parts
the impedance

ZIm~v!5
Z0k0

4p2b2 ~am1ae!, ~12a!

ZRe~v!5
Z0k0

2

16p3b4ln~d/b!
~am

2 1ae
2!, ~12b!

which can be obtained independently by the modified Be
theory @2# or by a field matching method@9#. Moreover, the
loss factor for a small hole,

kl~sz!5
Z0cAp

64p4b4ln~d/b!sz
3 ~am

2 1ae
2!, ~13!

can be easily obtained from Eq.~11! if the conditionL/sz
!1 is satisfied.

FIG. 2. Imaginary impedance of a rectangular slot.

FIG. 3. Real impedance of a rectangular slot.
f

e

B. Limit for long slots

When the wavelength is much shorter than the slot leng
from Eq.~9! we see that, consideringk0L@1, the impedance
is given by

ZIM~v!'
Z0k0

4p2b2 F ~am1ae!2
~am2ae!

2

8pb2ln~d/b!L
G ,

~14a!

ZRE~v!5
Z0k0

2

32p3b4ln~d/b!
~am1ae!

2. ~14b!

For very long slots we may use in Eqs.~14! the following
relations@10#

am52ae5a}L, ~15!

which show that, in this case, both real and imaginary pa
of the impedance have their limit equal to zero. It must
stressed that this result is not applicable to the low freque
impedance since it does not fulfill the conditionk0L@1.

The loss factor can be obtained directly from Eq.~11! and
it saturates forL.2sz . This effect is in agreement with@4#.
In order to get the saturation value, we may use Eqs.~15!
getting

kl~sz!5
Z0cAp

128p4b4ln~d/b!sz
S 2a

L
D 2

. ~16!

It is worth noting that Eq.~16! is independent from the
shape of the slot ends since the limit value ofa is the same
(pW2L/16).

V. COMPARISONS WITH NUMERICAL RESULTS

We have performed simulations with the numerical co
MAFIA @11# in the case of both rectangular and rounded e
slots of different lengthL, width W, and for a beam pipe
thickness in the rangeT51 – 8 mm~see Figs. 5–7!. To this
end, it has been necessary to slightly modify the equation
account for the wall thickness that changes the problem
ometry and introduces attenuation for the field in the s
Calling b1 andb2 , respectively the inner and the outer radi
of the beam pipe, one can see that the factorb4 in the de-

FIG. 4. Loss factor vs length for a rectangular slot~solid line!.
The dashed line is the low frequency approximation.
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nominator of Eqs.~9! and ~11! has to be replaced by th
productb1

2b2
2. Furthermore the polarizabilities must be co

rected; in a thin wall their expressions are@10#

ae52
p

16
W2L~120.5663x10.1398x2!, ~17a!

am5
p

16
W2L~110.3577x20.0356x2! ~17b!

for rectangular slots, while for rounded end they become

ae52
p

16
W2L~120.7650x10.1894x2!, ~18a!

am5
p

16
W2L~120.0857x20.0654x2!, ~18b!

wherex5W/L.
In general, the effect of the pipe thickness can be con

ered, using the approximation developed by McDonald@12#,
as a function of the corresponding ‘‘zero-thickness’’ polar
abilities as

ãe5CEaee
2gT with g5pA1/L211/W2 ~19a!

ãm5CMame2pT/W, ~19b!

whereT is the wall thickness andCE andCM are constants to
be determined.

This approach has been successfully applied for a circ
hole where the value of the constants’ analog toCE andCM
are numerically calculated in@12# and found to be approxi
mately equal to 0.83. In our case, it is questionable whe
this approach may be applicable to the case ofT/W ratios as
small as 0.1. In@12# it is suggested that Eqs.~19! are very
accurate, in the case of circular holes, when the thickn
diameter ratioT/D.0.25, though numerical results in th
paper show that, forT/D'0.1, the error in the thick-wal
polarizability determination is around 10%. A comparison
the analytical~dashed lines in Figs. 5 and 6! and numerical
results obtained withMAFIA ~black diamonds!, suggests the
following values:CE5CM50.63 for T/W50.1 and 0.2. In
order to check this result, the loss factor has been comp

FIG. 5. Loss factor of a rectangular slot 8 mm wide. Bla
diamonds areMAFIA points.
d-

-
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er
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numerically in the saturation region versus the wall thic
ness. Comparison with expression~16! corrected by Eqs.
~19! gives as best fitCE5CM50.615~See Fig. 7!.

It should be pointed out that the theory adopted to acco
for the slot thickness is, strictly speaking, valid only in th
static approximation. In our case, the primary fieldH0w field
does not couple to the TEn,0 modes of the rectangular slo
while the first coupling mode is the TE0,1 having its cutoff
frequency atf @0,1#5c/2W. Thus the static approximation fo
the attenuation is still valid in the frequency range of o
interest, namely,l@W.

VI. CONCLUSIONS

In this paper we have obtained an approximated analyt
expression for the coupling impedance and loss factor o
long slot in a coaxial pipe. When the slot is longer than t
wavelength, the real part of the impedance presents a typ
resonant behavior related to the slot length. Our results ar
good agreement with those obtained in literature with diff
ent methods and withMAFIA simulations.

APPENDIX

From Eqs.~1! and ~2!

dMw~z!5
am

L
@H0w~z!2Hsw~z!#dz, ~A1!

FIG. 6. Loss factor of a rectangular slot 10 mm wide. Bla
diamonds areMAFIA points.

FIG. 7. Loss factor of a rectangular slot 8 mm wide in t
saturation region (L5160 mm) vsT/W ratio. Black diamonds are
MAFIA points.
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dPr~z!5
«ae

L
@E0r~z!2Esr~z!#dz, ~A2!

where the primary incident field is given by

E0r~z!5Z0H0w~z!5Z0

q

2pb
e2 jk0z. ~A3!

Each infinitesimal element of the slot at positionj, is the
source of a forward and a backward TEM wave with amp
tude @5#

da~j!5
j v

2
@mh0wdMw~j!1e0rdPr~j!#, ~A4!

db~j!52
j v

2
@mh0wdMw~j!2e0rdPr~j!#, ~A5!
s.
-

whereh0w ande0r are the TEM modal function.
The total scattered field is the integral along the slot of

these waves. We may write

Hsw~z!5E
2L/2

z

h0we2 jk0~z2j!da~j!

2E
z

L/2

h0wejk0~z2j!db~j!, ~A6!

Esr~z!5E
2L/2

z

e0re
2 jk0~z2j!da~j!1E

z

L/2

e0re
jk0~z2j!db~j!

~A7!

from which Eqs.~3! are easily derived.
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